Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 586(7829): 412-416, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33029011

RESUMO

An important tenet of learning and memory is the notion of a molecular switch that promotes the formation of long-term memory1-4. The regulation of proteostasis is a critical and rate-limiting step in the consolidation of new memories5-10. One of the most effective and prevalent ways to enhance memory is by regulating the synthesis of proteins controlled by the translation initiation factor eIF211. Phosphorylation of the α-subunit of eIF2 (p-eIF2α), the central component of the integrated stress response (ISR), impairs long-term memory formation in rodents and birds11-13. By contrast, inhibiting the ISR by mutating the eIF2α phosphorylation site, genetically11 and pharmacologically inhibiting the ISR kinases14-17, or mimicking reduced p-eIF2α with the ISR inhibitor ISRIB11, enhances long-term memory in health and disease18. Here we used molecular genetics to dissect the neuronal circuits by which the ISR gates cognitive processing. We found that learning reduces eIF2α phosphorylation in hippocampal excitatory neurons and a subset of hippocampal inhibitory neurons (those that express somatostatin, but not parvalbumin). Moreover, ablation of p-eIF2α in either excitatory or somatostatin-expressing (but not parvalbumin-expressing) inhibitory neurons increased general mRNA translation, bolstered synaptic plasticity and enhanced long-term memory. Thus, eIF2α-dependent mRNA translation controls memory consolidation via autonomous mechanisms in excitatory and somatostatin-expressing inhibitory neurons.


Assuntos
Fator de Iniciação 2 em Eucariotos/metabolismo , Hipocampo/citologia , Consolidação da Memória , Neurônios/metabolismo , Somatostatina/metabolismo , Animais , Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/fisiologia , Fator de Iniciação 2 em Eucariotos/deficiência , Fator de Iniciação 2 em Eucariotos/genética , Potenciais Pós-Sinápticos Excitadores , Hipocampo/fisiologia , Potenciação de Longa Duração , Masculino , Memória de Longo Prazo , Camundongos , Camundongos Endogâmicos C57BL , Inibição Neural , Plasticidade Neuronal , Parvalbuminas , Fosforilação , Células Piramidais/fisiologia , Transmissão Sináptica
2.
Front Mol Neurosci ; 13: 67, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32499677

RESUMO

Dopamine, alongside other neuromodulators, defines brain and neuronal states, inter alia through regulation of global and local mRNA translation. Yet, the signaling pathways underlying the effects of dopamine on mRNA translation and psychiatric disorders are not clear. In order to examine the molecular pathways downstream of dopamine receptors, we used genetic, pharmacologic, biochemical, and imaging methods, and found that activation of dopamine receptor D1 but not D2 leads to rapid dephosphorylation of eEF2 at Thr56 but not eIF2α in cortical primary neuronal culture in a time-dependent manner. NMDA receptor, mTOR, and ERK pathways are upstream of the D1 receptor-dependent eEF2 dephosphorylation and essential for it. Furthermore, D1 receptor activation resulted in a major reduction in dendritic eEF2 phosphorylation levels. D1-dependent eEF2 dephosphorylation results in an increase of BDNF and synapsin2b expression which was followed by a small yet significant increase in general protein synthesis. These results reveal the role of dopamine D1 receptor in the regulation of eEF2 pathway translation in neurons and present eEF2 as a promising therapeutic target for addiction and depression as well as other psychiatric disorders.

3.
Bio Protoc ; 8(16): e2475, 2018 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34395771

RESUMO

The trace fear conditioning protocol is designed to measure hippocampal function in mice. The protocol includes a neutral conditioned stimulus (tone) and an aversive unconditioned stimulus (shock), separated in time by a trace interval. The trace interval between the tone and the shock critically involves the hippocampus and could be used to evaluate hippocampal-dependent learning and memory. In this protocol, we presented mice with five pairings of tone and shock separated by a 20 sec trace interval. Freezing was measured 24 h after conditioning to evaluate contextual memory by placing mice in the conditioned chamber. In addition, 48 h after conditioning, freezing was measured in a dark chamber, which served as a different context. This method enables precise detection of hippocampal-dependent learning and memory following pharmacological and genetic manipulations that impair or enhance hippocampal function.

4.
Front Mol Neurosci ; 11: 480, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30686999

RESUMO

Aging is a major risk factor for many diseases including metabolic syndrome, cancer, inflammation, and neurodegeneration. Identifying mechanistic common denominators underlying the impact of aging is essential for our fundamental understanding of age-related diseases and the possibility to propose new ways to fight them. One can define aging biochemically as prolonged metabolic stress, the innate cellular and molecular programs responding to it, and the new stable or unstable state of equilibrium between the two. A candidate to play a role in the process is protein kinase R (PKR), first identified as a cellular protector against viral infection and today known as a major regulator of central cellular processes including mRNA translation, transcriptional control, regulation of apoptosis, and cell proliferation. Prolonged imbalance in PKR activation is both affected by biochemical and metabolic parameters and affects them in turn to create a feedforward loop. Here, we portray the central role of PKR in transferring metabolic information and regulating cellular function with a focus on cancer, inflammation, and brain function. Later, we integrate information from open data sources and discuss current knowledge and gaps in the literature about the signaling cascades upstream and downstream of PKR in different cell types and function. Finally, we summarize current major points and biological means to manipulate PKR expression and/or activation and propose PKR as a therapeutic target to shift age/metabolic-dependent undesired steady states.

5.
NPJ Sci Learn ; 1: 16001, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27721985

RESUMO

The current dogma suggests that the formation of long-term memory (LTM) is dependent on protein synthesis but persistence of the memory trace is not. However, many of the studies examining the effect of protein synthesis inhibitors (PSIs) on LTM persistence were performed in the hippocampus, which is known to have a time-dependent role in memory storage, rather than the cortex, which is considered to be the main structure to store long-term memories. Here we studied the effect of PSIs on LTM formation and persistence in male Wistar Hola (n ≥ 5) rats by infusing the protein synthesis inhibitor, anisomycin (100 µg, 1 µl), into the gustatory cortex (GC) during LTM formation and persistence in conditioned taste aversion (CTA). We found that local anisomycin infusion to the GC before memory acquisition impaired LTM formation (P = 8.9E - 5), but had no effect on LTM persistence when infused 3 days post acquisition (P = 0.94). However, when we extended the time interval between treatment with anisomycin and testing from 3 days to 14 days, LTM persistence was enhanced (P = 0.01). The enhancement was on the background of stable and non-declining memory, and was not recapitulated by another amnesic agent, APV (10 µg, 1 µl), an N-methyl-d-aspartate receptor antagonist (P = 0.54). In conclusion, CTA LTM remains sensitive to the action of PSIs in the GC even 3 days following memory acquisition. This sensitivity is differentially expressed between the formation and persistence of LTM, suggesting that increased cortical protein synthesis promotes LTM formation, whereas decreased protein synthesis promotes LTM persistence.

6.
Front Mol Neurosci ; 7: 86, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25429258

RESUMO

The amount and availability of proteins are regulated by their synthesis, degradation, and transport. These processes can specifically, locally, and temporally regulate a protein or a population of proteins, thus affecting numerous biological processes in health and disease states. Accordingly, malfunction in the processes of protein turnover and localization underlies different neuronal diseases. However, as early as a century ago, it was recognized that there is a specific need for normal macromolecular synthesis in a specific fragment of the learning process, memory consolidation, which takes place minutes to hours following acquisition. Memory consolidation is the process by which fragile short-term memory is converted into stable long-term memory. It is accepted today that synaptic plasticity is a cellular mechanism of learning and memory processes. Interestingly, similar molecular mechanisms subserve both memory and synaptic plasticity consolidation. In this review, we survey the current view on the connection between memory consolidation processes and proteostasis, i.e., maintaining the protein contents at the neuron and the synapse. In addition, we describe the technical obstacles and possible new methods to determine neuronal proteostasis of synaptic function and better explain the process of memory and synaptic plasticity consolidation.

7.
Neurobiol Learn Mem ; 105: 100-6, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23742918

RESUMO

One of the hallmarks of learning processes in any species studied so far is that they require intact protein synthesis machinery in order to consolidate memories. Interestingly, synaptic plasticity and consolidation processes share similar molecular mechanisms. In recent years, different laboratories have been studying regulation of translation machinery as a molecular entity underlying the consolidation process. Protein synthesis consists of three phases: initiation, elongation, and termination. The initiation step is considered the rate limiting step of protein synthesis. However, there is growing evidence that critical regulation of protein synthesis occurs at the elongation phase as well. Here, we focus on the eukaryotic elongation factor 2 (eEF2) pathway as a major regulator of protein synthesis, synaptic plasticity and memory consolidation.


Assuntos
Quinase do Fator 2 de Elongação/metabolismo , Aprendizagem/fisiologia , Plasticidade Neuronal , Fator 2 de Elongação de Peptídeos/metabolismo , Biossíntese de Proteínas , Animais , Humanos , Camundongos , Fosforilação , Ratos , Transdução de Sinais
8.
Learn Mem ; 19(9): 410-22, 2012 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-22904372

RESUMO

mRNA translation, or protein synthesis, is a major component of the transformation of the genetic code into any cellular activity. This complicated, multistep process is divided into three phases: initiation, elongation, and termination. Initiation is the step at which the ribosome is recruited to the mRNA, and is regarded as the major rate-limiting step in translation, while elongation consists of the elongation of the polypeptide chain; both steps are frequent targets for regulation, which is defined as a change in the rate of translation of an mRNA per unit time. In the normal brain, control of translation is a key mechanism for regulation of memory and synaptic plasticity consolidation, i.e., the off-line processing of acquired information. These regulation processes may differ between different brain structures or neuronal populations. Moreover, dysregulation of translation leads to pathological brain function such as memory impairment. Both normal and abnormal function of the translation machinery is believed to lead to translational up-regulation or down-regulation of a subset of mRNAs. However, the identification of these newly synthesized proteins and determination of the rates of protein synthesis or degradation taking place in different neuronal types and compartments at different time points in the brain demand new proteomic methods and system biology approaches. Here, we discuss in detail the relationship between translation regulation and memory or synaptic plasticity consolidation while focusing on a model of cortical-dependent taste learning task and hippocampal-dependent plasticity. In addition, we describe a novel systems biology perspective to better describe consolidation.


Assuntos
Regulação da Expressão Gênica/fisiologia , Memória/fisiologia , Biossíntese de Proteínas/fisiologia , Animais , Córtex Cerebral/metabolismo , Hipocampo/metabolismo , Humanos , MicroRNAs/metabolismo , Modelos Moleculares , Doenças do Sistema Nervoso/genética , Doenças do Sistema Nervoso/metabolismo , Neurônios/fisiologia , Neurotransmissores/metabolismo , Paladar/fisiologia
9.
Int J Neuropsychopharmacol ; 15(7): 869-82, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22008100

RESUMO

Evidence concerning ion-channel abnormalities in the pathophysiology of common psychiatric disorders is still limited. Given the significance of ion channels in neuronal activity, neurotransmission and neuronal plasticity we hypothesized that the expression patterns of genes encoding different ion channels may be altered in schizophrenia, bipolar and unipolar disorders. Frozen samples of striatum including the nucleus accumbens (Str-NAc) and the lateral cerebellar hemisphere of 60 brains from depressed (MDD), bipolar (BD), schizophrenic and normal subjects, obtained from the Stanley Foundation Brain Collection, were assayed. mRNA of 72 different ion-channel subunits were determined by qRT-PCR and alteration in four genes were verified by immunoblotting. In the Str-NAc the prominent change was observed in the MDD group, in which there was a significant up-regulation in genes encoding voltage-gated potassium-channel subunits. However, in the lateral cerebellar hemisphere (cerebellum), the main change was observed in schizophrenia specimens, as multiple genes encoding various ion-channel subunits were significantly down-regulated. The impaired expression of genes encoding ion channels demonstrates a disease-related neuroanatomical pattern. The alterations observed in Str-NAc of MDD may imply electrical hypo-activity of this region that could be of relevance to MDD symptoms and treatment. The robust unidirectional alteration of both excitatory and inhibitory ion channels in the cerebellum may suggests cerebellar general hypo-transcriptional activity in schizophrenia.


Assuntos
Transtorno Bipolar/metabolismo , Transtorno Depressivo Maior/metabolismo , Regulação da Expressão Gênica/fisiologia , Canais Iônicos/metabolismo , Neurônios/metabolismo , Esquizofrenia/metabolismo , Adulto , Análise de Variância , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Antipsicóticos/farmacologia , Transtorno Bipolar/tratamento farmacológico , Transtorno Bipolar/genética , Canais de Cloreto/genética , Canais de Cloreto/metabolismo , Transtorno Depressivo Maior/tratamento farmacológico , Transtorno Depressivo Maior/genética , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Canais Iônicos/classificação , Canais Iônicos/genética , Masculino , Pessoa de Meia-Idade , Neurônios/efeitos dos fármacos , Análise de Sequência com Séries de Oligonucleotídeos , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , RNA Mensageiro/metabolismo , Esquizofrenia/tratamento farmacológico , Esquizofrenia/genética , Canais de Sódio/genética , Canais de Sódio/metabolismo
10.
Front Behav Neurosci ; 5: 87, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22319481

RESUMO

The senses of taste and odor are both chemical senses. However, whereas an organism can detect an odor at a relatively long distance from its source, taste serves as the ultimate proximate gatekeeper of food intake: it helps in avoiding poisons and consuming beneficial substances. The automatic reaction to a given taste has been developed during evolution and is well adapted to conditions that may occur with high probability during the lifetime of an organism. However, in addition to this automatic reaction, animals can learn and remember tastes, together with their positive or negative values, with high precision and in light of minimal experience. This ability of mammalians to learn and remember tastes has been studied extensively in rodents through application of reasonably simple and well defined behavioral paradigms. The learning process follows a temporal continuum similar to those of other memories: acquisition, consolidation, retrieval, relearning, and reconsolidation. Moreover, inhibiting protein synthesis in the gustatory cortex (GC) specifically affects the consolidation phase of taste memory, i.e., the transformation of short- to long-term memory, in keeping with the general biochemical definition of memory consolidation. This review aims to present a general background of taste learning, and to focus on recent findings regarding the molecular mechanisms underlying taste-memory consolidation in the GC. Specifically, the roles of neurotransmitters, neuromodulators, immediate early genes, and translation regulation are addressed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...